
Library functionality

Our library can be used in the two following ways:

 Parallel database files converter - external sequential files to binary parallel format
 ANSYS, ABAQUS, etc. to ESPRESO, OpenFOAM, etc.

 Direct input to the parallel solvers - the proposed library is part of our scalable ESPRESO
 solver based on hybrid FETI methods for solution of multiphysical problems.

Domain decompositon can follow element regions or element types. This functi-
onality enhamces the scalable properties of our parallel algorithms.

If we use direct input to the parallel solvers for multiple solutions on the same database,
it is not necessary to have a fixed number of MPIs (domains) in a parallel binary file. This is sui-
table where there is variability in the availability of computational resources at the desired time.

MOTIVATION

H
PC

 C
lu

st
er

Engineering community
 without HPC knowledge

Robust and e�cient
preProcessing tools

Sequential converting

Sequential
database

Massively
parallel
solvers

Presented parallel approach
without HPC barriers

HPC Barrier

768 1536192 3849648

5

10

15

20

0

25

#MPI

As an example, we present results based on the input
data file generated by the commercial ANSYS soft-
ware. The input file is a text file that contains a full
description of a finite element model, and the data
are organized in blocks, the properties of which are
defined by commands.
The major part of the file contains a description of
nodes and elements. These blocks are followed by
another problem description such as definition of
regions, materials, boundary and initial conditions,
etc.

Many commercial software packages, such as
ABAQUS, NASTRAN etc. have very similar com-
mand structures for the database files.

This type of files do not suppose parallel processing.

STEP 01

The first step is to load data from one or multiple files
to the main memory. This is performed by a collective
MPI file reader. Each process reads approximately
the same number of bytes that are aligned, to allow
parsing by each process separately.

After loading is done, interpretation of the input lan-
guage is performed. This is based on the processing
of the data and commands in the ANSYS text file
structure. Detected blocks, their positions, and para-
meters are exchanged among all MPI processes.

A similar approach can easily be used for other com-
mand based database files (ABAQUS, NASTRAN)

MPI I/O & DATA PARSING

STEP 02

INPUT EXTERNAL DATA

Since elements and coordinates IDs are randomly
distributed, processes with elements do not known
where to ask for the coordinates. This fact also com-
plicates the process of assigning the regions that are
usually given by a list of nodes or elements IDs. In
order to ensure approximately the same amount of
work for all processes, we first balance the nodes
and elements, and then parallel sorting is applied ac-
cording to given sets of IDs.

After the sorting step, distribution of the nodes can
easielly be described by a vector. Due to this, ele-
ments know where to ask for coordinates.

This step allows assigning elements, nodes, and
faces regions.

PARALLEL SORTING

STEP 03

Decompositions based on spatial locality are generally
worse, in terms of finite element solver requirements,
than dual graph based approaches, especially for pro-
blems with complicated geometries.

Geometric decomposition reduces the number of ne-
ighbors and allows the distributed dual graph to be
computed efficiently in parallel. For improving solver
scalability, the dual graph also captures aditional mesh
informations like bodies, regions, and element types.

DUAL GRAPH

STEP 05

DOMAIN DECOMPOSITION

STEP 06

The main problem of loading a mesh in parallel is the
non-contiguous distribution of elements among pro-
cesses. To be able to achieve a good scalability of the
mesh processing, the following properties of a mesh
are required:

• the mesh elements have to be uniformly distributed
to spatially close clusters,

• the number of neighbouring processes must be as
 small as possible.

External tools for mesh generators do not take this
into account, because the spatial position of ele-
ments is irrelevant. To keep the communication
overhead relatively small, elements have to be re-ar-

SPATIAL LOCALITY - CLUSTERIZATION

STEP 04

ranged.
In this step, elements that are distributed according
to their IDs are redistributed into clusters - a set of
elements that is assigned to one particular process
and fulfill the spatial locality requirements.

The clusterization is based on the Hilbert Space
Filling Curve, which has minimal input requirements
(coordinates only) and allows effective parallelizati-
on. The speed and scalability of the algorithm is en-
hanced at the expense of the quality of the final dis-
tribution.

Geometric decomposition is crucial for scalability of
the next step.

Create data in external tools Loading and understanding data Balance distributed data Space Filling Curve decomposition

S
ix

 s
te

ps
 fo

r
sc

al
ab

le
 d

at
a

pr
oc

es
si

ng

Scalable solution Multilevel approach

JET ENGINE

A well balanced decomposition of a mesh directly
impacts the scalability of the applied solvers. For the
final domain decomposition, we use libraries that
provide “high quality“ decomposition and support
the MPI parallelization needed for HPC clusters.
(ParMETIS or ptSCOTCH). These libraries have ne-
ighbor dependent scalability.

The described workflow prepares multilevel decom-
position suitable for massively parallel solvers.

MPI OpenMP

JET ENGINE - Parallel Scalability

The dual graph is suitable for de-
composition of complex geomet-
ries with various parameters.

768 1536 3072192 384

50

100

150

200

0

#MPI

Ti
m

e
[s

ec
]

STEP 2 - MPI I/O & Data Parsing

STEP 3/4 - Distributing Mesh

STEP 5/6 - Mesh Preprocessing

processing mesh as a solver input in 28 seconds
sequential text file size 150 GB

Multilevel Decomposition
34 000 domains with 3072 MPI processes

822 milion Nodes

208

105

56

36

28

The number of MPIs used
for mesh processing is

enough for the in-house
hybrid solver ESPRESO,

which is able to fully utilize
modern supercomputers
with hybrid architectures.

768 1536192 384

5

10

15

20

0

#MPI

Ti
m

e
[s

ec
]

MANIFOLD
100M Nodes

73M Elements

almost all external
faces in regions

parallel processing
7 sec

VALVE
32M Nodes

23M Elements

almost all external
faces in regions

parallel processing
5 sec

768 1536192 384

5

10

15

20

0

#MPI

Ti
m

e
[s

ec
]

25

DISC BRAKE
122M Nodes

45M Elements

12 element regions
30 face regions

parallel processing
11 sec

parMETIS
with optimized input

MPI_File_opensequential processing 443 sec.

Spatial Locality - elements on MPI RANK 0

Graphs are composed from areas that correspond with the steps outlined at the bottom. The first (green) area shows times for reading and parsing a file. The highlighted part
shows the increasing time of MPI_File_open. It introduces an overhead for the large number of MPI processes (the time is not dependent on the size of a read file). We include
this function in the measurements because we present the total time needed to prepare a mesh for a solver. On the other hand, MPI I/O is out of the scope of our approach.
Hence, we have not implemented any kind of optimizations. The second (orange) area shows times for parallel sorting according to IDs, assigning regions, and clusterization of
a mesh via SFC. The last (purple) area shows times for improving the quality of the decomposition. It includes computation of the dual graph and calling ParMETIS (its computati-
on time is also highlighted). The last area also contains the second level decomposition (using METIS), a synchronization of regions, rearranging nodes and elements, etc. These
steps are required for the effective functioning of our parallel solver.

parMETIS time
without clusterization

For comparison, graphs include a reprezentation of parMETIS when clusterization is excluded from the processing work-
flow. If the finite element model contains lots of element regions, the running time of parMETIS does not rise so quickly
(natural clusterization). The parMETIS running time in the optimized workflow is in the graphs included in the mesh pro-
cessing stage.

Our motivation is to create a library connecting between tools for the creation of complex engineering models (such as ANSYS, HyperMesh, ANSA, ABAQUS, etc.)
along with open source parallel solvers enabling the broader usage of HPC by the engineering community. The result of this direct connection is robust preproces-
sing together with possibility to connect various highly parallel solvers that are able to solve non-standard problems.

Acknowledgement
 This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project "IT4Innovations excellence in science - LQ1602" and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project "IT4Innovations National Supercomputing Center - LM2015070".
 This work is partially supported by project EXPERTISE - models, EXperiments and high PERformance computing for Turbine mechanical integrity and Structural dynamics in Europe, http://www.msca-expertise.eu, and also partially supported by the SGC grant No. SP2018/159 „Hardware acceleration of matrix assembler and GUI development of ESPRESO library“, VSB-TU Ostrava.

169M Nodes
85M Elements

parallel processing
10 sec

sequential processing 1270 sec.LOADER ARM

Would you
like to know

more?

WORKFLOW FOR PARALLEL PROCESSING
OF SEQUENTIAL MESH DATABASES

nodes elements

nodes elements

nodes elements

nodes elements

nodes

nodes

elements

elements

IDs

one or
multiple

MPI

regions
mat

regions
mat

regions
mat

regions
mat

}
X - Y - Z

spatial locality

}
scalable dual graph

Czech Republic

Tomas Brzobohaty tomas.brzobohaty@vsb.cz
Lubomir Riha lubomir.riha@vsb.cz Ondrej Meca ondrej.meca@vsb.cz |

multilevel decomposition

distributed memory shared memory

MPI OpenMP

sequential processing 1359 sec. sequential processing 938 sec.

•

•

768 1536192 384
#MPI

5

10

15

20

0

Ti
m

e
[s

ec
]

25

